Rainow Primary School

Calculation Policy 2014-2015

Addition – Years 1-3

Year 1	Year 2	Year 3					
+ = signs and missing numbers Children need to understand the concept of equality before using the '=' sign. Calculations should be written either side of the equality sign so that the sign is not just interpreted as 'the answer'. 2 = 1+ 1 2 + 3 = 4 + 1 Missing numbers need to be placed in all possible places. 3 + 4 = □ □ = 3 + 4 3 + □ = 7 7 = □ + 4 Counting and Combining sets of Objects Combining two sets of objects (aggregation) which will progress onto adding on to a set (augmentation)	Missing number problems e.g 14 + 5 = 10 + 32 + = 100 35 = 1 + 5 It is valuable to use a range of representations (also see Y1). Continue to use numberlines to develop understanding of: Counting on in tens and of es 23 + 12 = 23 + 10 + 2 = 33 + 2 = 35 Partitioning and bridging through 10. The steps in addition often bridge through a multiple of 10 e.g. Children should be able to partition the 7 to relate adding the 2 and then the 5. 8 + 7 = 15 Adding 9 or 11 by adding 10 and adjusting by 1 e.g. Add 9 by adding 10 and adjusting by 1 35 + 9 = 44 Towards a Written Method	Missing number problems using a range of equations as in Year 1 and 2 but with appropriate, larger numbers. Partition into tens and ones Partition both numbers and recombine. Count on by partitioning the second number only e.g. 247 + 125 = 247 + 100 + 20 + 5 = 347 + 20 + 5 = 367 + 5 = 372 Children need to be secure adding multiples of 100 and 10 to any three-digit number including those that are not multiples of 10. Towards a Written Method Introduce expanded column addition modelled with place value counters (Dienes could be used for those who need a less abstract representation) 200 + 40 + 7 100 + 20 + 5 300 + 60 + 12 = 372 247					
Understanding of counting on with a numberline (supported by models and images).	Partitioning in different ways and recombine 47+25 47 25 60 + 12	(a) (b) (c) (d) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e					
7+4	Leading to exchanging: 72 Expanded written method 40 + 7 + 20 + 5 = 40 + 20 + 7 + 5 = 60 + 12 = 72	Leading to children understanding the exchange between tens and ones. Be be between tens and ones. B					

The National Curriculum in England. ©Crown Copyright 2013 Year 1 objectives

Statutory requirements

- read, write and interpret mathematical statements involving addition (+), subtraction
 (-) and equals (=) signs
- represent and use number bonds and related subtraction facts within 20
- add and subtract one-digit and two-digit numbers to 20, including zero
- solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as 7 = □ − 9.

Year 1 guidance

Notes and guidance (non-statutory)

Pupils memorise and reason with number bonds to 10 and 20 in several forms (for example, 9 + 7 = 16; 16 - 7 = 9; 7 = 16 - 9). They should realise the effect of adding or subtracting zero. This establishes addition and subtraction as related operations.

Pupils combine and increase numbers, counting forwards and backwards.

They discuss and solve problems in familiar practical contexts, including using quantities. Problems should include the terms: put together, add, altogether, total, take away, distance between, difference between, more than and less than, so that pupils develop the concept of addition and subtraction and are enabled to use these operations flexibly.

Year 2 objectives

Statutory requirements

- solve problems with addition and subtraction:
 - using concrete objects and pictorial representations, including those involving numbers, quantities and measures
 - applying their increasing knowledge of mental and written methods
- recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
- add and subtract numbers using concrete objects, pictorial representations, and mentally, including:
 - a two-digit number and ones
 - a two-digit number and tens
 - two two-digit numbers
 - adding three one-digit numbers
- show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
- recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.

The National Curriculum in England. ©Crown Copyright 2013 Year 2 guidance

Notes and guidance (non-statutory)

Pupils extend their understanding of the language of addition and subtraction to include sum and difference.

Pupils practise addition and subtraction to 20 to become increasingly fluent in deriving facts such as using 3 + 7 = 10; 10 - 7 = 3 and 7 = 10 - 3 to calculate 30 + 70 = 100; 100 - 70 = 30 and 70 = 100 - 30. They check their calculations, including by adding to check subtraction and adding numbers in a different order to check addition (for example, 5 + 2 + 1 = 1 + 5 + 2 = 1 + 2 + 5). This establishes commutativity and associativity of addition.

Recording addition and subtraction in columns supports place value and prepares for formal written methods with larger numbers.

Year 3 objectives

Statutory requirements

- add and subtract numbers mentally, including:
 - a three-digit number and ones
 - a three-digit number and tens
 - a three-digit number and hundreds
- add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction
- estimate the answer to a calculation and use inverse operations to check answers
- solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.

The National Curriculum in England. ©Crown Copyright 2013 Year 3 guidance

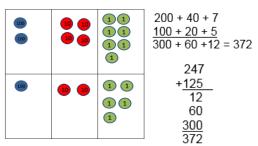
Notes and guidance (non-statutory)

Pupils practise solving varied addition and subtraction questions. For mental calculations with two-digit numbers, the answers could exceed 100.

Pupils use their understanding of place value and partitioning, and practise using columnar addition and subtraction with increasingly large numbers up to three digits to become fluent (see <u>Mathematics Appendix 1</u>).

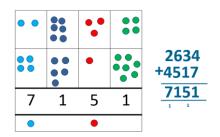
Addition – Years 4-6

Year 4


Year 5

Year 6

Missing number/digit problems:


Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Written methods (progressing to 4-digits)

Expanded column addition modelled with place value counters, progressing to calculations with 4digit numbers.

Compact written method

Extend to numbers with at least four digits.

Children should be able to make the choice of reverting to expanded methods if experiencing any difficulty.

Extend to up to two places of decimals (same number of decimals places) and adding several numbers (with different numbers of digits).

72.8

+ 54.6

127.4

1 1

Missing number/digit problems:

Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Children should practise with increasingly large numbers to aid fluency e.g. 12462 + 2300 = 14762

Written methods (progressing to more than 4-digits)

As year 4, progressing when understanding of the expanded method is secure, children will move on to the formal columnar method for whole numbers and decimal numbers as an efficient written algorithm.

172.83 + 54.68 227.51 1 1 1

Place value counters can be used alongside the columnar method to develop understanding of addition with decimal numbers.

Missing number/digit problems:

Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving.

Written methods

As year 5, progressing to larger numbers, aiming for both conceptual understanding and procedural fluency with columnar method to be secured. Continue calculating with decimals, including those with different numbers of decimal places

Problem Solving

Teachers should ensure that pupils have the opportunity to apply their knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen their understanding.

The National Curriculum in England. ©Crown Copyright 2013 Year 4 objectives

Statutory requirements

- add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate
- estimate and use inverse operations to check answers to a calculation
- solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.

The National Curriculum in England. ©Crown Copyright 2013 **Year 4 guidance**

Notes and guidance (non-statutory)

Pupils continue to practise both mental methods and columnar addition and subtraction with increasingly large numbers to aid fluency (see English Appendix 1).

The National Curriculum in England. ©Crown Copyright 2013 Year 5 objectives

Statutory requirements

- add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
- add and subtract numbers mentally with increasingly large numbers
- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- solve addition and subtraction multi-step problems in contexts, deciding which
 operations and methods to use and why.

The National Curriculum in England. ©Crown Copyright 2013 Year 5 guidance

Notes and guidance (non-statutory)

Pupils practise using the formal written methods of columnar addition and subtraction with increasingly large numbers to aid fluency (see Mathematics Appendix 1).

They practise mental calculations with increasingly large numbers to aid fluency (for example, $12\ 462 - 2300 = 10\ 162$).

Year 6 objectives

Statutory requirements

Pupils should be taught to:

- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- divide numbers up to 4 digits by a two-digit number using the formal written method
 of short division where appropriate, interpreting remainders according to the context
- perform mental calculations, including with mixed operations and large numbers
- identify common factors, common multiples and prime numbers
- use their knowledge of the order of operations to carry out calculations involving the four operations
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

135

Mathematics

Statutory requirements

- solve problems involving addition, subtraction, multiplication and division
- use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.

The National Curriculum in England. ©Crown Copyright 2013 Year 6 guidance

Notes and guidance (non-statutory)

Pupils practise addition, subtraction, multiplication and division for larger numbers, using the formal written methods of columnar addition and subtraction, short and long multiplication, and short and long division (see Mathematics Appendix 1).

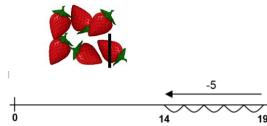
They undertake mental calculations with increasingly large numbers and more complex calculations.

Pupils continue to use all the multiplication tables to calculate mathematical statements in order to maintain their fluency.

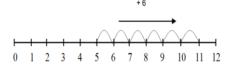
Pupils round answers to a specified degree of accuracy, for example, to the nearest 10, 20, 50 etc., but not to a specified number of significant figures.

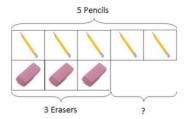
Pupils explore the order of operations using brackets; for example, $2 + 1 \times 3 = 5$ and $(2 + 1) \times 3 = 9$.

Common factors can be related to finding equivalent fractions.



Subtraction – Years 1-3


Year 1

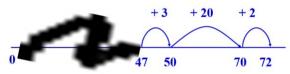

Missing number problems e.g. $7 = \square - 9$; $20 - \square = 9$; $15 - 9 = \square$; $\square - \square = 11$; $16 - 0 = \square$ Use concrete objects and pictorial representations. If appropriate, progress from using number lines with every number shown to number lines with significant numbers shown.

Understand subtraction as take-away:

Understand subtraction as finding the difference:

The above model would be introduced with concrete objects which children can move (including cards with pictures) before progressing to pictorial representation.

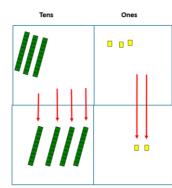
The use of other images is also valuable for modelling subtraction e.g. Numicon, bundles of straws, Dienes apparatus, multi-link cubes, bead strings


Year 2

Missing number problems e.g. $52 - 8 = \Box$; $\Box - 20 = 25$; $22 = \Box - 21$: $6 + \Box + 3 = 11$

It is valuable to use a range of representations (also see Y1). Continue to use number lines to model take-away and difference.

The link between the two may be supported by an image like this, with 47 being taken away from 72, leaving the difference, which is 25.

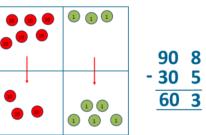


The bar model should continue to be used, as well as images in the context of **measures**.

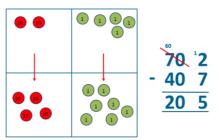
Towards written methods

E.g.

Recording addition and subtraction in expanded columns can support understanding of the quantity aspect of place value and prepare for efficient written methods with larger numbers. The numbers may be represented with Dienes apparatus. E.g. 75-42


Year 3

Missing number problems e.g. $\Box = 43 - 27$; $145 - \Box = 138$; $274 - 30 = \Box$; $245 - \Box = 195$; $532 - 200 = \Box$; $364 - 153 = \Box$


Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving (see Y1 and Y2). Children should make choices about whether to use complementary addition or counting back, depending on the numbers involved.

Written methods (progressing to 3-digits)

Introduce expanded column subtraction with no decomposition, modelled with place value counters (Dienes could be used for those who need a less abstract representation)

For some children this will lead to exchanging, modelled using <u>place value counters</u> (or <u>Dienes</u>).

A number line and expanded column method may be compared next to each other.

Some children may begin to use a formal columnar algorithm, initially introduced alongside the expanded method. The formal method should be seen as a more streamlined version of the expanded method, not a new method.

The National Curriculum in England. ©Crown Copyright 2013 Year 1 objectives

Statutory requirements

- read, write and interpret mathematical statements involving addition (+), subtraction
 (-) and equals (=) signs
- represent and use number bonds and related subtraction facts within 20
- add and subtract one-digit and two-digit numbers to 20, including zero
- solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as 7 = □ − 9.

The National Curriculum in England. ©Crown Copyright 2013 Year 1 guidance

Notes and guidance (non-statutory)

Pupils memorise and reason with number bonds to 10 and 20 in several forms (for example, 9 + 7 = 16; 16 - 7 = 9; 7 = 16 - 9). They should realise the effect of adding or subtracting zero. This establishes addition and subtraction as related operations.

Pupils combine and increase numbers, counting forwards and backwards.

They discuss and solve problems in familiar practical contexts, including using quantities. Problems should include the terms: put together, add, altogether, total, take away, distance between, difference between, more than and less than, so that pupils develop the concept of addition and subtraction and are enabled to use these operations flexibly.

Year 2 objectives

Statutory requirements

- solve problems with addition and subtraction:
 - using concrete objects and pictorial representations, including those involving numbers, quantities and measures
 - applying their increasing knowledge of mental and written methods
- recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
- add and subtract numbers using concrete objects, pictorial representations, and mentally, including:
 - a two-digit number and ones
 - a two-digit number and tens
 - two two-digit numbers
 - adding three one-digit numbers
- show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
- recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.

The National Curriculum in England. ©Crown Copyright 2013 Year 2 guidance

Notes and guidance (non-statutory)

Pupils extend their understanding of the language of addition and subtraction to include sum and difference.

Pupils practise addition and subtraction to 20 to become increasingly fluent in deriving facts such as using 3 + 7 = 10; 10 - 7 = 3 and 7 = 10 - 3 to calculate 30 + 70 = 100; 100 - 70 = 30 and 70 = 100 - 30. They check their calculations, including by adding to check subtraction and adding numbers in a different order to check addition (for example, 5 + 2 + 1 = 1 + 5 + 2 = 1 + 2 + 5). This establishes commutativity and associativity of addition.

Recording addition and subtraction in columns supports place value and prepares for formal written methods with larger numbers.

Year 3 objectives

Statutory requirements

- add and subtract numbers mentally, including:
 - a three-digit number and ones
 - a three-digit number and tens
 - a three-digit number and hundreds
- add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction
- estimate the answer to a calculation and use inverse operations to check answers
- solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.

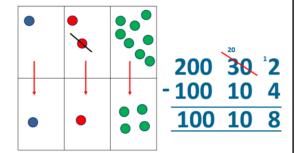
The National Curriculum in England. ©Crown Copyright 2013 Year 3 guidance

Notes and guidance (non-statutory)

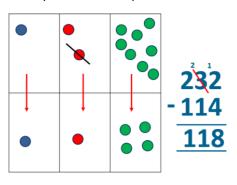
Pupils practise solving varied addition and subtraction questions. For mental calculations with two-digit numbers, the answers could exceed 100.

Pupils use their understanding of place value and partitioning, and practise using columnar addition and subtraction with increasingly large numbers up to three digits to become fluent (see <u>Mathematics Appendix 1</u>).

Subtraction – Years 4-6


Year 4

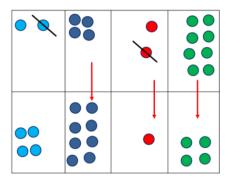
Missing number/digit problems: $456 + \Box = 710$; $1\Box 7 + 6\Box = 200$; $60 + 99 + \Box = 340$; $200 - 90 - 80 = \Box$; $225 - \Box = 150$; $\Box - 25 = 67$; $3450 - 1000 = \Box$; $\Box - 2000 = 900$


<u>Mental methods</u> should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving.

Written methods (progressing to 4-digits)

Expanded column subtraction with decomposition, modelled with place value counters, progressing to calculations with 4-digit numbers.

If understanding of the expanded method is secure, children will move on to the formal method of decomposition, which again can be initially modelled with place value counters.


Year 5

Missing number/digit problems: $6.45 = 6 + 0.4 + \Box$; $119 - \Box = 86$; $1\ 000\ 000 - \Box = 999\ 000$; $600\ 000 + \Box + 1000 = 671\ 000$; $12\ 462 - 2\ 300 = \Box$

<u>Mental methods</u> should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving.

Written methods (progressing to more than 4-digits)

When understanding of the expanded method is secure, children will move on to the formal method of decomposition, which can be initially modelled with place value counters.

Year 6

Missing number/digit problems: \Box and # each stand for a different number. # = 34. # + # = \Box + #. What is the value of \Box ? What if # = 28? What if # = 21

10 000 000 = 9 000 100 + \Box

 $7 - 2 \times 3 = \square$; $(7 - 2) \times 3 = \square$; $(\square - 2) \times 3 = 15$

Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving.

Written methods

As year 5, progressing to larger numbers, aiming for both conceptual understanding and procedural fluency with decomposition to be secured.

Teachers may also choose to introduce children to other efficient written layouts which help develop conceptual understanding. For example:

326

-<u>148</u>

-2

-20

200

178

Progress to calculating with decimals, including those with different numbers of decimal places.

Continue calculating with decimals, including those with different numbers of decimal places.

The National Curriculum in England. ©Crown Copyright 2013 Year 4 objectives

Statutory requirements

- add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate
- estimate and use inverse operations to check answers to a calculation
- solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.

The National Curriculum in England. ©Crown Copyright 2013 Year 5 objectives

Statutory requirements

- add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
- add and subtract numbers mentally with increasingly large numbers
- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- solve addition and subtraction multi-step problems in contexts, deciding which
 operations and methods to use and why.

The National Curriculum in England. ©Crown Copyright 2013 Year 5 guidance

Notes and guidance (non-statutory)

Pupils practise using the formal written methods of columnar addition and subtraction with increasingly large numbers to aid fluency (see Mathematics Appendix 1).

They practise mental calculations with increasingly large numbers to aid fluency (for example, 12 462 – 2300 = 10 162).

Year 6 objectives

Statutory requirements

Pupils should be taught to:

- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- divide numbers up to 4 digits by a two-digit number using the formal written method
 of short division where appropriate, interpreting remainders according to the context
- perform mental calculations, including with mixed operations and large numbers
- identify common factors, common multiples and prime numbers
- use their knowledge of the order of operations to carry out calculations involving the four operations
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

135

Mathematics

Statutory requirements

- solve problems involving addition, subtraction, multiplication and division
- use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.

The National Curriculum in England. ©Crown Copyright 2013 Year 6 guidance

Notes and guidance (non-statutory)

Pupils practise addition, subtraction, multiplication and division for larger numbers, using the formal written methods of columnar addition and subtraction, short and long multiplication, and short and long division (see Mathematics Appendix 1).

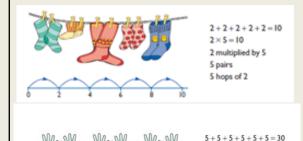
They undertake mental calculations with increasingly large numbers and more complex calculations.

Pupils continue to use all the multiplication tables to calculate mathematical statements in order to maintain their fluency.

Pupils round answers to a specified degree of accuracy, for example, to the nearest 10, 20, 50 etc., but not to a specified number of significant figures.

Pupils explore the order of operations using brackets; for example, $2 + 1 \times 3 = 5$ and $(2 + 1) \times 3 = 9$.

Common factors can be related to finding equivalent fractions.

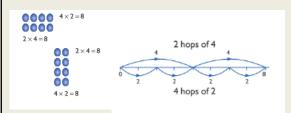


Multiplication – Years 1-3

Year 1

Understand multiplication is related to doubling and combing groups of the same size (repeated addition)

Washing line, and other practical resources for counting. Concrete objects. Numicon; bundles of straws, bead strings

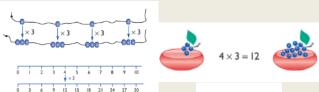


Problem solving with concrete objects (including money and measures

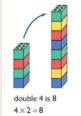
5 multiplied by 6 6 groups of 5 6 hops of 5

Use cuissenaire and bar method to develop the vocabulary relating to 'times' – Pick up five, 4 times

Use arrays to understand multiplication can be done in any order (commutative)

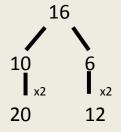

Year 2

Expressing multiplication as a number sentence using x Using understanding of the inverse and practical resources to solve missing number problems.


7 x 2 = □	□ = 2 x 7
7 x □ = 14	14 = □ x 7
□ x 2 = 14	14 = 2 x □
□ x ○ = 14	14 = □ x (

Develop understanding of multiplication using array and number lines (see Year 1). Include multiplications not in the 2, 5 or 10 times tables.

Begin to develop understanding of multiplication as scaling (3 times bigger/taller)



Doubling numbers up to 10 + 10 Link with understanding scaling Using known doubles to work out double 2d numbers (double 15 = double 10 + double 5)

Towards written methods

Use jottings to develop an understanding of doubling two digit numbers.

Year 3

Missing number problems

Continue with a range of equations as in Year 2 but with appropriate numbers.

Mental methods

Doubling 2 digit numbers using partitioning

Demonstrating multiplication on a number line – jumping in larger groups of amounts

13 x 4 = 10 groups 4 = 3 groups of 4

Written methods (progressing to 2d x 1d)

Developing written methods using understanding of visual images

					1	0				8				8				
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	3	P	0	0	0	0	0	0	0	Q	4	0	0	0
•	0	0	0	0	O	0	0	0	0	0	0	0	0	0	0	0	0	0

Develop onto the grid method

	1 0	8
3	3 0	2 4

Give children opportunities for children to explore this and deepen understanding using Dienes apparatus and place value counters

The National Curriculum in England. ©Crown Copyright 2013 **Year 1 objectives**

Statutory requirements

Pupils should be taught to:

 solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

The National Curriculum in England. ©Crown Copyright 2013 **Year 1 guidance**

Notes and guidance (non-statutory)

Through grouping and sharing small quantities, pupils begin to understand: multiplication and division; doubling numbers and quantities; and finding simple fractions of objects, numbers and quantities.

They make connections between arrays, number patterns, and counting in twos, fives and tens.

The National Curriculum in England. ©Crown Copyright 2013 Year 2 objectives

Statutory requirements

- recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers
- calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (×), division (÷) and equals (=) signs
- show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
- solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

The National Curriculum in England. ©Crown Copyright 2013 Year 2 guidance

Notes and guidance (non-statutory)

Pupils use a variety of language to describe multiplication and division.

Pupils are introduced to the multiplication tables. They practise to become fluent in the 2, 5 and 10 multiplication tables and connect them to each other. They connect the 10 multiplication table to place value, and the 5 multiplication table to the divisions on the clock face. They begin to use other multiplication tables and recall multiplication facts, including using related division facts to perform written and mental calculations.

Pupils work with a range of materials and contexts in which multiplication and division relate to grouping and sharing discrete and continuous quantities, to arrays and to repeated addition. They begin to relate these to fractions and measures (for example, $40 \div 2 = 20$, 20 is a half of 40). They use commutativity and inverse relations to develop multiplicative reasoning (for example, $4 \times 5 = 20$ and $20 \div 5 = 4$).

The National Curriculum in England. ©Crown Copyright 2013 Year 3 objectives

Statutory requirements

- recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables
- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

The National Curriculum in England. ©Crown Copyright 2013 Year 3 guidance

Notes and guidance (non-statutory)

Pupils continue to practise their mental recall of multiplication tables when they are calculating mathematical statements in order to improve fluency. Through doubling, they connect the 2, 4 and 8 multiplication tables.

Pupils develop efficient mental methods, for example, using commutativity and associativity (for example, $4 \times 12 \times 5 = 4 \times 5 \times 12 = 20 \times 12 = 240$) and multiplication and division facts (for example, using $3 \times 2 = 6$, $6 \div 3 = 2$ and $2 = 6 \div 3$) to derive related facts (for example, $30 \times 2 = 60$, $60 \div 3 = 20$ and $20 = 60 \div 3$).

Pupils develop reliable written methods for multiplication and division, starting with calculations of two-digit numbers by one-digit numbers and progressing to the formal written methods of short multiplication and division.

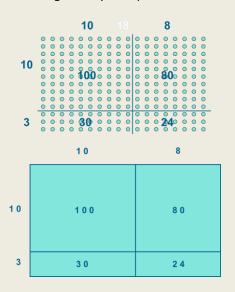
Pupils solve simple problems in contexts, deciding which of the four operations to use and why. These include measuring and scaling contexts, (for example, four times as high, eight times as long etc.) and correspondence problems in which m objects are connected to n objects (for example, 3 hats and 4 coats, how many different outfits?; 12 sweets shared equally between 4 children; 4 cakes shared equally between 8 children).

Multiplication – Years 4-6

Year 4

Continue with a range of equations as in Year 2 but with appropriate numbers. Also include equations with missing digits

 \Box 2 x 5 = 160


Mental methods

Counting in multiples of 6, 7, 9, 25 and 1000, and steps of 1/100.

Solving practical problems where children need to scale up. Relate to known number facts. (e.g. how tall would a 25cm sunflower be if it grew 6 times taller?)

Written methods (progressing to 3d x 2d)

Children to embed and deepen their understanding of the grid method to multiply up 2d x 2d. Ensure this is still linked back to their understanding of arrays and place value counters.

Year 5

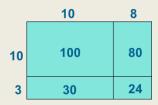
Continue with a range of equations as in Year 2 but with appropriate numbers. Also include equations with missing digits

Mental methods

X by 10, 100, 1000 using moving digits ITP

Use practical resources and jottings to explore equivalent statements (e.g. $4 \times 35 = 2 \times 2 \times 35$)

Recall of prime numbers up 19 and identify prime numbers up to 100 (with reasoning)


Solving practical problems where children need to scale up. Relate to known number facts.

Identify factor pairs for numbers

Written methods (progressing to 4d x 2d)

Long multiplication using place value counters

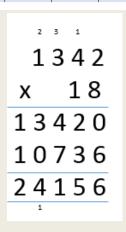
Children to explore how the grid method supports an understanding of long multiplication (for 2d x 2d)

	1	8		
×	1	3		
1	8	0		
	5	4		
2	3	4		

Year 6

Continue with a range of equations as in Year 2 but with appropriate numbers. Also include equations with missing digits

Mental methods


Identifying common factors and multiples of given numbers

Solving practical problems where children need to scale up. Relate to known number facts.

Written methods

Continue to refine and deepen understanding of written methods including fluency for using long multiplication

X	1000	300	40	2
10	10000	3000	400	20
8	8000	2400	320	16

The National Curriculum in England. ©Crown Copyright 2013 Year 4 objectives

Statutory requirements

- recall multiplication and division facts for multiplication tables up to 12 × 12
- use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1; dividing by 1; multiplying together three numbers
- recognise and use factor pairs and commutativity in mental calculations
- multiply two-digit and three-digit numbers by a one-digit number using formal written layout
- solve problems involving multiplying and adding, including using the distributive law
 to multiply two digit numbers by one digit, integer scaling problems and harder
 correspondence problems such as n objects are connected to m objects.

The National Curriculum in England. ©Crown Copyright 2013 Year 4 guidance

Notes and guidance (non-statutory)

Pupils continue to practise recalling and using multiplication tables and related division facts to aid fluency.

Pupils practise mental methods and extend this to three-digit numbers to derive facts, (for example $600 \div 3 = 200$ can be derived from $2 \times 3 = 6$).

121

Mathematics

Notes and guidance (non-statutory)

Pupils practise to become fluent in the formal written method of short multiplication and short division with exact answers (see <u>Mathematics Appendix 1</u>).

Pupils write statements about the equality of expressions (for example, use the distributive law $39 \times 7 = 30 \times 7 + 9 \times 7$ and associative law $(2 \times 3) \times 4 = 2 \times (3 \times 4)$). They combine their knowledge of number facts and rules of arithmetic to solve mental and written calculations for example, $2 \times 6 \times 5 = 10 \times 6 = 60$.

Pupils solve two-step problems in contexts, choosing the appropriate operation, working with increasingly harder numbers. This should include correspondence questions such as the numbers of choices of a meal on a menu, or three cakes shared equally between 10 children.

The National Curriculum in England. ©Crown Copyright 2013 Year 5 objectives

Statutory requirements

Pupils should be taught to:

- identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers
- know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers
- establish whether a number up to 100 is prime and recall prime numbers up to 19
- multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
- multiply and divide numbers mentally drawing upon known facts
- divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- multiply and divide whole numbers and those involving decimals by 10, 100 and 1000

Statutory requirements

- recognise and use square numbers and cube numbers, and the notation for squared
 (2) and cubed (3)
- solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes
- solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
- solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.

Year 5 guidance

Notes and guidance (non-statutory)

Pupils practise and extend their use of the formal written methods of short multiplication and short division (see Mathematics Appendix 1). They apply all the multiplication tables and related division facts frequently, commit them to memory and use them confidently to make larger calculations.

They use and understand the terms factor, multiple and prime, square and cube numbers.

Pupils interpret non-integer answers to division by expressing results in different ways according to the context, including with remainders, as fractions, as decimals or by rounding (for example, $98 \div 4 = \frac{98}{4} = 24 \text{ r } 2 = 24\frac{1}{2} = 24.5 \approx 25$).

Pupils use multiplication and division as inverses to support the introduction of ratio in year 6, for example, by multiplying and dividing by powers of 10 in scale drawings or by multiplying and dividing by powers of a 1000 in converting between units such as kilometres and metres.

Distributivity can be expressed as a(b + c) = ab + ac.

They understand the terms factor, multiple and prime, square and cube numbers and use them to construct equivalence statements (for example, $4 \times 35 = 2 \times 2 \times 35$; $3 \times 270 = 3 \times 3 \times 9 \times 10 = 9^2 \times 10$).

Pupils use and explain the equals sign to indicate equivalence, including in missing number problems (for example, 13 + 24 = 12 + 25; $33 = 5 \times \square$).

Year 6 objectives

Statutory requirements

Pupils should be taught to:

- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- divide numbers up to 4 digits by a two-digit number using the formal written method
 of short division where appropriate, interpreting remainders according to the context
- perform mental calculations, including with mixed operations and large numbers
- identify common factors, common multiples and prime numbers
- use their knowledge of the order of operations to carry out calculations involving the four operations
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

135

Mathematics

Statutory requirements

- solve problems involving addition, subtraction, multiplication and division
- use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.

The National Curriculum in England. ©Crown Copyright 2013 Year 6 guidance

Notes and guidance (non-statutory)

Pupils practise addition, subtraction, multiplication and division for larger numbers, using the formal written methods of columnar addition and subtraction, short and long multiplication, and short and long division (see Mathematics Appendix 1).

They undertake mental calculations with increasingly large numbers and more complex calculations.

Pupils continue to use all the multiplication tables to calculate mathematical statements in order to maintain their fluency.

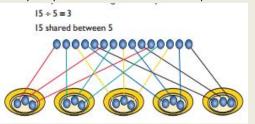
Pupils round answers to a specified degree of accuracy, for example, to the nearest 10, 20, 50 etc., but not to a specified number of significant figures.

Pupils explore the order of operations using brackets; for example, $2 + 1 \times 3 = 5$ and $(2 + 1) \times 3 = 9$.

Common factors can be related to finding equivalent fractions.

Division – Years 1-3

Year 1


Children must have secure counting skills- being able to confidently count in 2s, 5s and 10s.

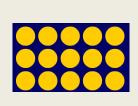
Children should be given opportunities to reason about what they notice in number patterns.

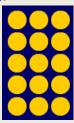
Group AND share small quantities- understanding the difference between the two concepts.

Sharing

Develops importance of one-to-one correspondence.

Children should be taught to share using concrete apparatus.


Grouping


Children should apply their counting skills to develop some understanding of grouping.

Use of arrays as a pictorial representation for division. $15 \div 3 = 5$ There are 5 groups of 3.

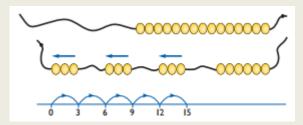
 $15 \div 5 = 3$ There are 3 groups of 5.

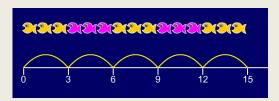
Children should be able to find $\frac{1}{2}$ and $\frac{1}{2}$ and simple fractions of objects, numbers and quantities.

Year 2

÷ = signs and missing numbers

6 ÷ 2 = □	□ = 6 ÷ 2
6 ÷ □ = 3	3 = 6 ÷ □
□ ÷ 2 = 3	3 = □ ÷ 2
□ ÷ ∇ = 3	3 = □ ÷ ∇


Know and understand sharing and grouping- introducing children to the \div sign.


Children should continue to use grouping and sharing for division using practical apparatus, arrays and pictorial representations.

Grouping using a numberline

Group from zero in jumps of the divisor to find our 'how many groups of 3 are there in 15?'.

$$15 \div 3 = 5$$

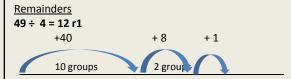
Continue work on arrays. Support children to understand how multiplication and division are inverse. Look at an array – what do you see?

÷ = signs and missing numbers

Continue using a range of equations as in year 2 but with appropriate numbers.

Year 3

Grouping


How many 6's are in 30? 30 ÷ 6 can be modelled as:

Becoming more efficient using a numberline

Children need to be able to partition the dividend in different ways.

Sharing – 49 shared between 4. How many left over? Grouping – How many 4s make 49. How many are left over?

Place value counters can be used to support children apply their knowledge of grouping.

For example:

 $60 \div 10 = \text{How many groups of } 10 \text{ in } 60?$ $600 \div 100 = \text{How many groups of } 100 \text{ in } 600?$

The National Curriculum in England. ©Crown Copyright 2013 **Year 1 objectives**

Statutory requirements

Pupils should be taught to:

 solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

The National Curriculum in England. ©Crown Copyright 2013 **Year 1 guidance**

Notes and guidance (non-statutory)

Through grouping and sharing small quantities, pupils begin to understand: multiplication and division; doubling numbers and quantities; and finding simple fractions of objects, numbers and quantities.

They make connections between arrays, number patterns, and counting in twos, fives and tens.

The National Curriculum in England. ©Crown Copyright 2013 Year 2 objectives

Statutory requirements

- recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers
- calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (×), division (÷) and equals (=) signs
- show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
- solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

The National Curriculum in England. ©Crown Copyright 2013 Year 2 guidance

Notes and guidance (non-statutory)

Pupils use a variety of language to describe multiplication and division.

Pupils are introduced to the multiplication tables. They practise to become fluent in the 2, 5 and 10 multiplication tables and connect them to each other. They connect the 10 multiplication table to place value, and the 5 multiplication table to the divisions on the clock face. They begin to use other multiplication tables and recall multiplication facts, including using related division facts to perform written and mental calculations.

Pupils work with a range of materials and contexts in which multiplication and division relate to grouping and sharing discrete and continuous quantities, to arrays and to repeated addition. They begin to relate these to fractions and measures (for example, $40 \div 2 = 20$, 20 is a half of 40). They use commutativity and inverse relations to develop multiplicative reasoning (for example, $4 \times 5 = 20$ and $20 \div 5 = 4$).

The National Curriculum in England. ©Crown Copyright 2013 Year 3 objectives

Statutory requirements

- recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables
- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

The National Curriculum in England. ©Crown Copyright 2013 Year 3 guidance

Notes and guidance (non-statutory)

Pupils continue to practise their mental recall of multiplication tables when they are calculating mathematical statements in order to improve fluency. Through doubling, they connect the 2, 4 and 8 multiplication tables.

Pupils develop efficient mental methods, for example, using commutativity and associativity (for example, $4 \times 12 \times 5 = 4 \times 5 \times 12 = 20 \times 12 = 240$) and multiplication and division facts (for example, using $3 \times 2 = 6$, $6 \div 3 = 2$ and $2 = 6 \div 3$) to derive related facts (for example, $30 \times 2 = 60$, $60 \div 3 = 20$ and $20 = 60 \div 3$).

Pupils develop reliable written methods for multiplication and division, starting with calculations of two-digit numbers by one-digit numbers and progressing to the formal written methods of short multiplication and division.

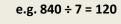
Pupils solve simple problems in contexts, deciding which of the four operations to use and why. These include measuring and scaling contexts, (for example, four times as high, eight times as long etc.) and correspondence problems in which m objects are connected to n objects (for example, 3 hats and 4 coats, how many different outfits?; 12 sweets shared equally between 4 children; 4 cakes shared equally between 8 children).

Division – Years 4-6

Year 4 Year 5

÷ = signs and missing numbers

Continue using a range of equations as in year 3 but with appropriate numbers.

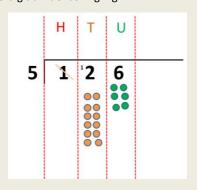

Sharing, Grouping and using a number line

Children will continue to explore division as sharing and grouping, and to represent calculations on a number line until they have a secure understanding. Children should progress in their use of written division calculations:

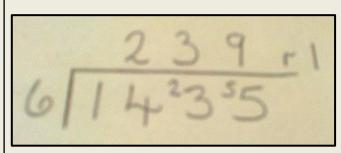
- Using tables facts with which they are fluent
- Experiencing a logical progression in the numbers they use, for example:
- 1. Dividend just over 10x the divisor, e.g. $84 \div 7$
- 2. Dividend just over 10x the divisor when the divisor is a teen number, e.g. 173 ÷ 15 (learning sensible strategies for calculations such as 102 ÷ 17)
- 3. Dividend over 100x the divisor, e.g. 840 ÷ 7
- 4. Dividend over 20x the divisor, e.g. 168 ÷ 7

All of the above stages should include calculations with remainders as well as without.

Remainders should be interpreted according to the context. (i.e. rounded up or down to relate to the answer to the problem)


<u>Jottings</u> 7 x 100 = 700 7 x 10 = 70 7 x 20 = 140

Formal Written Methods


Formal short division should only be introduced once children have a good understanding of division, its links with multiplication and the idea of 'chunking up' to find a target number (see use of number lines above)

Short division to be modelled for understanding using place value counters as shown below. Calculations with 2 and 3-digit dividends. E.g. fig 1

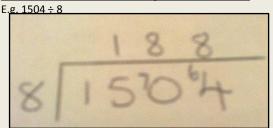
Formal Written Methods

Continued as shown in Year 4, leading to the efficient use of a formal method. The language of grouping to be used (see link from fig. 1 in Year 4) E.g. $1435 \div 6$

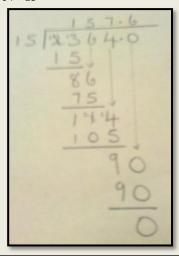
Children begin to practically develop their understanding of how express the remainder as a decimal or a fraction. Ensure practical understanding allows children to work through this (e.g. what could I do with this remaining 1? How could I share this between 6 as well?)

÷ = signs and missing numbers

Continue using a range of equations but with appropriate numbers


Sharing and Grouping and using a number line

Children will continue to explore division as sharing and grouping, and to represent calculations on a number line as appropriate.


Year 6

Quotients should be expressed as decimals and fractions

Formal Written Methods - long and short division

E.g. 2364 ÷ 15

The National Curriculum in England. ©Crown Copyright 2013 Year 4 objectives

Statutory requirements

- recall multiplication and division facts for multiplication tables up to 12 × 12
- use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1; dividing by 1; multiplying together three numbers
- recognise and use factor pairs and commutativity in mental calculations
- multiply two-digit and three-digit numbers by a one-digit number using formal written layout
- solve problems involving multiplying and adding, including using the distributive law
 to multiply two digit numbers by one digit, integer scaling problems and harder
 correspondence problems such as n objects are connected to m objects.

The National Curriculum in England. ©Crown Copyright 2013 Year 4 guidance

Notes and guidance (non-statutory)

Pupils continue to practise recalling and using multiplication tables and related division facts to aid fluency.

Pupils practise mental methods and extend this to three-digit numbers to derive facts, (for example $600 \div 3 = 200$ can be derived from $2 \times 3 = 6$).

121

Mathematics

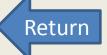
Notes and guidance (non-statutory)

Pupils practise to become fluent in the formal written method of short multiplication and short division with exact answers (see Mathematics Appendix 1).

Pupils write statements about the equality of expressions (for example, use the distributive law $39 \times 7 = 30 \times 7 + 9 \times 7$ and associative law $(2 \times 3) \times 4 = 2 \times (3 \times 4)$). They combine their knowledge of number facts and rules of arithmetic to solve mental and written calculations for example, $2 \times 6 \times 5 = 10 \times 6 = 60$.

Pupils solve two-step problems in contexts, choosing the appropriate operation, working with increasingly harder numbers. This should include correspondence questions such as the numbers of choices of a meal on a menu, or three cakes shared equally between 10 children.

Year 5 objectives


Statutory requirements

Pupils should be taught to:

- identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers
- know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers
- establish whether a number up to 100 is prime and recall prime numbers up to 19
- multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
- multiply and divide numbers mentally drawing upon known facts
- divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- multiply and divide whole numbers and those involving decimals by 10, 100 and 1000

Statutory requirements

- recognise and use square numbers and cube numbers, and the notation for squared
 (²) and cubed (³)
- solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes
- solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
- solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.

Year 5 guidance

Notes and guidance (non-statutory)

Pupils practise and extend their use of the formal written methods of short multiplication and short division (see Mathematics Appendix 1). They apply all the multiplication tables and related division facts frequently, commit them to memory and use them confidently to make larger calculations.

They use and understand the terms factor, multiple and prime, square and cube numbers.

Pupils interpret non-integer answers to division by expressing results in different ways according to the context, including with remainders, as fractions, as decimals or by rounding (for example, $98 \div 4 = \frac{98}{4} = 24 \text{ r } 2 = 24\frac{1}{2} = 24.5 \approx 25$).

Pupils use multiplication and division as inverses to support the introduction of ratio in year 6, for example, by multiplying and dividing by powers of 10 in scale drawings or by multiplying and dividing by powers of a 1000 in converting between units such as kilometres and metres.

Distributivity can be expressed as a(b + c) = ab + ac.

They understand the terms factor, multiple and prime, square and cube numbers and use them to construct equivalence statements (for example, $4 \times 35 = 2 \times 2 \times 35$; $3 \times 270 = 3 \times 3 \times 9 \times 10 = 9^2 \times 10$).

Pupils use and explain the equals sign to indicate equivalence, including in missing number problems (for example, 13 + 24 = 12 + 25; $33 = 5 \times \square$).

Year 6 objectives

Statutory requirements

Pupils should be taught to:

- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- divide numbers up to 4 digits by a two-digit number using the formal written method
 of short division where appropriate, interpreting remainders according to the context
- perform mental calculations, including with mixed operations and large numbers
- identify common factors, common multiples and prime numbers
- use their knowledge of the order of operations to carry out calculations involving the four operations
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

135

Mathematics

Statutory requirements

- solve problems involving addition, subtraction, multiplication and division
- use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.

Year 6 guidance

Notes and guidance (non-statutory)

Pupils practise addition, subtraction, multiplication and division for larger numbers, using the formal written methods of columnar addition and subtraction, short and long multiplication, and short and long division (see Mathematics Appendix 1).

They undertake mental calculations with increasingly large numbers and more complex calculations.

Pupils continue to use all the multiplication tables to calculate mathematical statements in order to maintain their fluency.

Pupils round answers to a specified degree of accuracy, for example, to the nearest 10, 20, 50 etc., but not to a specified number of significant figures.

Pupils explore the order of operations using brackets; for example, $2 + 1 \times 3 = 5$ and $(2 + 1) \times 3 = 9$.

Common factors can be related to finding equivalent fractions.

Acknowledgement of sources for ideas and materials included in this policy.

The National Strategies:

Teaching Children to Calculate Mentally. DfE 2010 Mathematical Vocabulary. DfES 2000 Models and images for understanding and manipulating numbers in Year 1 to 3. DfES 2003

National Centre for Excellence in the Teaching of Mathematics:

PowerPoint slides courtesy of the NCETM – PD Lead Support Programme 2013. Crown Copyright. Also materials used from NCETM website https://www.ncetm.org.uk/